Notes.

(a) You may freely use any result proved in class unless you have been asked to prove the same. Use your judgement. All other steps must be justified.

(b) \mathbb{R} = real numbers

(c) There are a total of 105 points in this paper. You will be awarded a maximum of 100 points.

1. [20 + 5 = 25 Points] Let $f: X \to Y$ be a smooth map of manifolds that is one-toone on a submanifold $Z \subset X$. Suppose that the derivative map $df_p: T_p(X) \to T_{f(p)}(Y)$ is an isomorphism for all $p \in Z$.

- (i) Prove that if Z is compact, then f maps an open neighbourhood of Z in X diffeomorphically onto an open neighbourhood of f(Z) in Y.
- (ii) Give an example where Z is not compact, and the conclusion in (i) fails.

2. [10 Points] Let Z be a submanifold of a manifold X. Prove that either Z is an open subset of X or $\dim(Z) < \dim(X)$.

3. [10 + 5 = 15 Points] Suppose X and Z are submanifolds of Y intersecting transversally with each other. Prove that for any $p \in X \cap Z$, we have $T_p(X \cap Z) = T_p(X) \cap T_p(Z)$ as subspaces of $T_p(Y)$. Give an example to show that equality may not hold for a non-transversal intersection.

4. [15 Points] Let X, Y be manifolds. Prove that if f, g, h are smooth maps from X to Y and if there is a smooth homotopy from f to g and a smooth homotopy from g to h, then there is a smooth homotopy from f to h.

(You may assume the following fact: For any two real numbers a < b, there exists a smooth function $\rho \colon \mathbb{R} \to \mathbb{R}$ such that $0 \le \rho(t) \le 1$ for all t and that $\rho(t) = 0$ if $t \le a$ while $\rho(t) = 1$ for $t \ge b$.)

5. [20 + 5 = 25 Points] Let X, Y be manifolds with X compact. Let $Z \subset Y$ be a closed submanifold. Explain why, the class of all smooth maps from X to Y that are transversal to Z, is a stable class. Give an example where stability fails if $Z \subset Y$ is not assumed to be closed.

- 6. [5 + 10 = 15 Points] Let X, Y be manifolds with $\dim(X) > \dim(Y)$.
 - (i) Prove that any smooth map $g: Y \to X$ is not surjective.
 - (ii) Assuming that $\dim(Y) = 1$, prove that any smooth map $f: X \to Y$ is not injective.